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Abstract —Various types of striplines with auisotropic media are

anatyzed. The anafytfcat approach used in this paper is based on the

network analytical method of electromagnetic fields, and the formulation

process is straightforward for complicated stroctnres. Some numericaf

results are presented and comparison is made with the resnlts available in

the literature.

I. INTRODUCTION

T HE NETWORK analytical method of electromagnetic

fields has been successfully applied to analyze the

propagation characteristics of planar transmission lines.

The hybrid-mode analysis of single and coupled slots was

presented by employing this method [1], [2]. Recently, the

dispersion characteristics of single rnicrostrip on an aniso-

tropic substrate have been obtained using this approach

[3].

Single and coupled striplines on an anisotropic substrate

have been analyzed by several investigators [3]-[7], but

hybrid-mode analysis is available only for the single micro-

strip case [3], [7], [8].

The purpose of this paper is to outline a new approach

which is an extension of the treatment used in [1 ]–[3] and

is capable of giving the propagation characteristics of

various types of striplines with anisotropic media inclu-

sively. In what follows, the formulation process is il-

lustrated using the general structure with multilayered

uniaxially anisotropic media. Two methods of solution are

presented. One is based on the quasi-static approximation

and it derives the transfo~ation from the case with aniso-

tropic layers to the case with equivalent isotropic layers.

The other is based on the hybrid-mode formulation and it

gives the frequency dependent solutions. The numerical

results will be presented for single and coupled microstrips,

coupled suspended strips, and coupled strips with overlay.

II. THE NETWORK ANALYTICAL METHOD OF

ELECTROMAGNETIC FIELDS

Fig. 1 shows the cross section of coupled strips having

multilayered uniaxially anisotropic media; whose permittiv-

ity tensors are
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Fig. 1. General structure of coupled strips having multilayered aniso-
tropic media.

As a first step we express the transverse fields in each

region by the following Fourier integral:

@ ) J{=; “ J’p(a;z)fl(a; x)
qo) )dae-j~oY 7

[=1 –~ Ip(a;z)zoxj(rx; x)

i=l,2,3 (2)

where

J__ Koe -j..,

““G f2=flxzo

Ko=:

K = Xorx + yo~o, K=IKI (3)

where POis the propagation constant in they-direction, X.,

Yo, and Z. are the x-, y-, and z-directed unit vectors,

respectively, and 1 = 1 and 1 = 2 represent E waves (Hz= O)

and H waves (E, = O), respectively. Equation (2) shows

that the field components are a superposition of inhomoge-

neous waves whose spatial variation is exp{ – j(ax + Doy)}.

Substituting the above expression into Maxwell’s field

equation, we obtain the following transmission-line equa-

tion in each region:

where

~[0 =

Z! 1)=

Y}’) =

F== “)=-

(5)
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gion (1) can be obtained from the transverse fields accord-

ing to

~:v . _._.!.-v.(lfpxzo).
j(l.)q$,,l

(13)

Substituting (2) and (12) into (13) and applying PO+O,

E(l) can be obtained as
z

~ z=-(d,+d, )

SHORTCIRCUIT

Fig. 2. Equivalent transmission-line circuits for transverse section of
coupled strips.

Notice that ~(i) and Kf) are the propagation constants in

the z-direction for E waves and H waves, respectively, and
(i) are the characteristic impedance for theseZ(i) and Z2

and applying the zero, frequency approximation u ~ O to

waves. (14), we get

“.(/
m

aT{l)(a; z)tX(x’).e–~~(x–x’) dx’da. (14)
—m

Performing the integration by parts, using the equation of

continuity

– j(.ou(x’) = *2X(X’) (15)

The boundary conditions to be satisfied are expressed as cosh{pl(z – dl)14}
‘~~m ‘(a)~, sin~(p,d,]al)E$l)(~>z) = 27rc0 -~follows:

~(’)(dl)=O (6) .a(x~)e–l~(x–x’)~a~x’

T“y(+o) = vp(-o) (7a) where

(7b) 1
F(a) =1~1)( + O) -- I}z)( –O) = i,

(8a)
~l=coth(pldllal) +czeL

~(2)(–d2+O)=qt3)(–d2–0)

(8b)I/2J(–d2+O) =lf3)(–d2–0)

~(3)(--d2–d3)=0 (9)

i,= - f~ f~(a;x’)i(x’)dx’ (lo)

1 + ~ tanh( p2d,lal) tanh( p~dqlal)

L=

tanh( pzdzlal) + ~ tanh( P3 d~lal)

J—W

where the asterisk signifies the complex conjugate func-

tions, and i(x’) is the current density on the strip conduc-
Pl=~ ~ze=g

(16)

(17)

(18)

(19)

tors at z = O“and may be expressed as
and U(X’) is the charge distribution on the strip conduc-

e = xOiX(x’)+ yoiY(x’). (11) tors. The potential distribution at z = O becomes

Considering the transmission-line equation (4) together V(X) ‘J%Z(X, Z) dz

with the boundary conditions (6)–(9), we can obtain the

equivalent circuits in the z-direction (Fig. 2). By conven-

tional circuit theory, the mode voltages ~(i) and currents
‘;~~G(a;xlx’)u(x’) dad~’ (20)

aO

II’) in each region can be expressed in terms of il as where

2 F(a)
fi(i)(a; z)= ZjZ)(a; z)il(a) G(a; xlx’)=m. — cos ax cos ax’ (for even modes)

(12)
[al

Ip(cK;z) =Zp(a;z)i/( a).

2 F(a)

The electromagnetic fields in each region can be obtained
—— — sm ax sin ax’ (for odd modes).

~ “ Ial
by substituting (12) into (2).

(21)

III. VARIATIONAL EXPRESSION FOR THE LINE On the strip conductor a < x < b, V(x) is equal to a
CAPACITANCE constant VO, that is, the potential difference between the

In the quasi-static approximation, the characteristic im- strip and the ground conductors

pedance and the normalized propagation constant can be

obtained from the line capacitance per unit length. We will V(X) =~o =~b/~G(a; XIX’) U(X’) dadx’,

derive a variational expression of the line capacitance of
.0

the general structure shown in Fig. 1.
a<x <b. (22)

The longitudinal component of the electric field in re- From (22), the variational expression for the line capaci-
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tance can be obtained [9]

1 v~—.—
CQ

/~b~mU(X)G(a;X,X’)a(X’) ~a~X’~X

.

(Jba(x)dx}2

(23)

where Q is the total charge on the strip conductor a < x < b

Q=/bu(x)dx. (24)
a

Equation (23), together with (21) and (17)–(19), suggests

that, in the quasi-static approximation, coupled strips with

multilayered uniaxially anisotropic media can be trans-

formed into the case with effective isotropic layers, of

which the effective thickness and the relative permittivity

me ~~” di and ~~, respectively.

IV. HYBRID-MODE ANALYSIS

The analytical method for the frequency-dependent

characteristics of coupled strips shown k Fig. 1 is ex-

plained here. This method is analogous to those used in

[1]-[3] and will be outlined briefly.

The transverse electric fields, which were obtained in the

integral representation in Section II, must be zero on the

strip conductors at z = O. This gives the integral equation

on the current density i(x) and the propagation constant

in the y-direction & The unknown current densities iX(x)

and iy(x) are expanded in terms of known sets of basis

functions as follows:
N,

ix(x) = Z axkfxk(x)
k=l

Ny

iy(x) = ~ aYkfY~(x) (25)
k=l

where aX~ and aY~ are unknown coefficients. Substituting

(25) into the integral equation and applying Galerkin’s

procedure, we obtain a set of simultaneous equations on

the unknown aX& and aY~. The propagation constant can

be obtained by searching the nontrivial solution.

The definition for the characteristic impedance is not

uniquely specified due to the propagation of the hybrid

mode. The definition chosen here is

P
2.==

I:
(26)

where 10 is the total current on one strip conductor, and

P,v, is the average power flow along they-direction.

V. BASIS FUNCTIONS

The line capacitance is calculated by applying the Ritz

procedure to the variational expression (23). In this proce-

dure, we express the unknown charge distribution u(x) as

dx)=.lo(x)+ i Afk(x)
k=l

(27)
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Fig. 3. (a) Coupled microstrips. (b) Coupled suspendedstrips. (c) Cou-
pled strips with overlay.

where ‘4k are vanatiomd parameters which are determined

so that the best approximation is obtained.

In the numerical computations, the choice of the basis

functions, ~k(~) in (27) and ~Xk(x) and ~yk(x) in (25), is

important. It is desirable that the edge effect should be

properly accounted for, and that the approximation to the
true value should be systematically improved by increasing

the number of basis functions. Taking these requirements

into account, we adopt the following families of functions

for basis functions:

fxk(x)=uk(’(xis)}

fk-l(x) ‘k-l(’(x~s))

} ~~
f,k(x) =

S=(a+b)/2, W=b–a (28)

where 7“( y) and U~( y) are Chebyshev’s polynomials of

the first and second kind, respectively. By the use of these

basis functions, the fast convergence to the exact values is

obtained. Preliminary computations show that N = 2 in
(27) and NX = NY = 2 in (25) are sufficient fOr any case.

VI. NUMERICAL RESULTS

Numerical computations were carried out for single and

coupled microstrips (Fig. 3(a)), coupled suspended strips

(Fig. 3(b)), and coupled strips with overlay (Fig. 3(c)). In
the open microstrip configurations of Fig. 3, the boundary

condition (6) or (9) for Fig. 1 should be replaced by the

radiation condition. However, the resulting equations thus

obtained are the same as those for Fig. 1 in which dl ~ co

or d~ e m. These calculations were performed using the

same computer program with very little modification.
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Fig. 4. Dispersion characteristics of single rnicrostrip on sapphire. ( c ~

= 9.4, ~,, = 11.6; – hybrid-mode; —-—quasi static; ——-
E1-Sherbiny’s [4].)
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Fig. 5. Dispersion characteristics of the first higher order mode of single
microstrip on sapphire. (— this theory; — -—TM. mode of a

sapphire-coated conductor; ———E1-Sherbiny’s [4].)
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Fig. 6. Characteristic impedance of single microstrip on sapphire

Fig. 4 shows the dispersion characteristics, the frequency

dependence of the effective dielectric constant C,ff =

~~/ti2cOp0, of single microstrip on sapphire substrates,

where Ceff for the dominant mode is reported and com-

pared with the results of E1-Sherbiny [8]. The agreement is

quite good, although some disagreement appears for wide

strips.

Fig. 5 shows the dispersion characteristics of the first

higher order mode, which are also compared with those

from [8]. Fig. 5 also presents the dispersion characteristics

of the TMO surface wave of the sapphire coated conductor

which results when W = O. When the strip is not so wide

compared with the substrate, the dispersion characteristics
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Fig. 7. (a) Dispersion characteristics of coupled microstrips on sapphire.

(b) Characteristic impedance of coupled microstrips on sapphire. ( w/h
=1, a/h = 0.25; —even mode (hybrid-mode); ———odd mode (hy-

brid-mode); —-—even mode (quasi-static); —--—odd mode (quasi-

static).)
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Fig. 8. Dispersion characteristics of coupled suspended strips. ([ ~ = 9.4,

c,, = 11.6, W/h = 1, a/h = 0.25; —even mode (hybrid-mode);

———odd mode (hybrid-mode); —-— even mode (quasi-static); —--
— odd mode (quasi-static).)
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Fig. 9. Dispersion characteristics of coupled strips with overlay. ( c ~ =

9,4, cl, = 11.6, 6.= 9.6, PV\h =1, a/h = 0.25; —even mode (hybrid-
mode); ———odd mode (hybrid mode); —-— even mode (quasi-
static); —--—odd mode (quasi-static).)



KITAZAWA AND HAYASHI : STRIPLINBS WITH ANISOTROPIC MSDIA 433

of the first higher order mode are indistinguishable from

those of the TMO surface wave,

The frequency dependence of the characteristic imped-

ance of single microstrip is shown in Fig. 6. Comparison of

the results by this method and those from [8] shows that

both results converge to the quasi-static values calculated

from (23), but that some discrepancies appear at high

frequencies. For single rnicrostrip, the characteristic imped-

ance is defined as

zo=~we

o
(29)

instead of (26) in our calculations, whereas it is defined as

the ratio of the voltage at the center of the strip to the total

longitudinal current in [8].

The dispersion characteristics of coupled microstrips,

coupled suspended strips, and coupled strips with a dielec-

tric overlay are depicted in Figs. 7, 8, and 9, respectively. It

should be noted that the dispersion characteristics of the

even mode of coupled suspended strips is more sensitive

than that of the odd mode to the variation in d/h, there-

fore the frequency at which both modes have the equal

phase velocity varies largely.

VII. CONCLUSIONS

Various types of striplines with artisotropic media have

been analyzed using the same approach, which is based on

the network analytical method of electromagnetic fields. h-t

this analytical approach, the derivation of Green’s func-

tions is based on the conventional circuit theory, therefore

the formulation for the complicated structures is straight-

forward.

Computations have been carried out by employing, the

efficient method based on the Ritz and Galerkin procedure

to calculate the propagation characteristics of single and

coupled rnicrostrips, coupled suspended strips, and coupled

strips with overlay. Numerical results of single microstrip

were compared with other available data.
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