IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-31, NO. 6, JUNE 1983 |

429

Propagation Characteristics of Striplines
with Multilayered Anisotropic Media

TOSHIHIDE KITAZAWA axp YOSHIO HAYASHI ‘

Abstract —Various types of striplines with anisotropic media are
analyzed. The analytical approach used in this paper is based on the
network analytical method of electromagnetic fields, and the formulation
process is straightforward for complicated structures. Some numerical
results are presented and comparison is made with the results available in
the literature.

I. INTRODUCTION

HE NETWORK analytical method of electromagnetic

fields has been successfully applied to analyze the
propagation characteristics of planar transmission lines.
The hybrid-mode analysis of single and coupled slots was
presented by employing this method [1], [2]. Recently, the
dispersion characteristics of single microstrip on an aniso-
tropic substrate have been obtained using this approach
[3].

Single and coupled striplines on an anisotropic substrate
have been analyzed by several investigators [3]-[7], but
hybrid-mode analysis is available only for the single micro-
strip case [3], [7], [8].

The purpose of this paper is to outline a new approach
which is an extension of the treatment used in [1]-[3] and
is capable of giving the propagation characteristics of
various types of striplines with anisotropic media inclu-
sively. In what follows, the formulation process is il-
lustrated using the general structure with multilayered
uniaxially anisotropic media. Two methods of solution are
presented. One is based on the quasi-static approximation
and it derives the transformation from the case with aniso-
tropic layers to the case with equivalent isotropic layers.
The other is based on the hybrid-mode formulation and it
gives the frequency dependent solutions. The numerical
results will be presented for single and coupled microstrips,
coupled suspended strips, and coupled strips with overlay.

II. THE NETWORK ANALYTICAL METHOD OF
ELECTROMAGNETIC FIELDS

Fig. 1 shows the cross section of coupled strips having
multilayered uniaxially anisotropic media, whose permittiv-
ity tensors are
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General structure of coupled strips having multilayered aniso-
tropic media.

Fig. 1.

As a first step we express the transverse fields in each
region by the following Fourier integral:

Et(l)}=zz:foo V(e z) f(e; x) dae—iBo
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i=1,2,3 (2)
where
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where S8, is the propagation constant in the y-direction, x,,
¥y, and z; are the x-, y-, and z-directed unit vectors,
respectively, and / =1 and / = 2 represent E waves (H, = 0)
and H waves (E,=0), respectively. Equation (2) shows
that the field components are a superposition of inhomoge-
neous waves whose spatial variation is exp{— j{ax + B, y)}.

Substituting the above expression into Maxwell’s field
equation, we obtain the following transmission-line equa-
tion in each region:

K = xoa + yoﬁo,

d , .
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SHORT CIRCUIT

Fig. 2. Equivalent transmission-line circuits for transverse section of
coupled strips.

Notice that x{? and «&” are the propagation constants in
the z-direction for E waves and H waves, respectively, and
z{® and z§) are the characteristic impedance for these
waves.

The boundary conditions to be satisfied are expressed as
follows:

V() =0
vO(+0) =V (~0)

(6)
(7a)

IO(+0)—-I2(-0) =, (7b)
VO(=dy+0)=V(-d; -0) (8a)
IP(~d,+0)=1P(-d,-0) (8b)

Vi (-dy—d;)=0 )

i=— f:of,*(a; x)-i(x") dx’ (10)

where the asterisk signifies the complex conjugate func-
tions, and i(x’) is the current density on the strip conduc-
tors at z =0 and may be expressed as

i(x) = xot (%) + yoi, (X'). (11)

Considering the transmission-line equation (4) together
with the boundary conditions (6)-(9), we can obtain the
equivalent circuits in the z-direction (Fig. 2). By conven-
tional circuit theory, the mode voltages V(" and currents
I in each region can be expressed in terms of i, as

Vi(a; 2) = Z{(a; 2)i (a)
I0(a; 2) =T (a; 2)i)(a). (12)

The electromagnetic fields in each region can be obtained
by substituting (12) into (2).

III. VARIATIONAL EXPRESSION FOR THE LINE
CAPACITANCE

In the quasi-static approximation, the characteristic im-
pedance and the normalized propagation constant can be
obtained from the line capacitance per unit length. We will
derive a variational expression of the line capacitance of
the general structure shown in Fig. 1.

The longitudinal component of the electric field in re-
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gion (1) can be obtained from the transverse fields accord-
ing to

EMD =

z

- v- (HDxz,). 13
JWEE 1y ( ! 0) ( )

Substituting (2) and (12) into (13) and applying B, =0,
EV can be obtained as

EM(x,z)= L

277 WEGEy

ff aTM(a; 2)i (x') e dx'da. (14)

Performing the integration by parts, using the equation of
continuity

(15)

and applying the zero frequency approximation @ =0 to
(14), we get

: 4 d ; s
- ]wo('x ) = dx/lx(x )
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and o(x’) is the charge distribution on the strip conduc-
tors. The potential distribution at z = 0 becomes

V(x)= f(;dlEZ(x, z)dz
=fab‘/(;°°G(a; x|x)o(x") dadx’

L=

(19)

(20)
where

G(a; x|x") = 2 Pl cos axcos ax’ (for even modes)
7E

o la
2 Fla)

ey |of

sinaxsinax’ (for odd modes).

(21)
On the strip conductor a <x<b, ¥F(x) is equal to a
constant Vj,, that is, the potential difference between the
strip and the ground conductors

V(x)=Y, =fb/:oG(a§ x|x)o(x") dadx’,
a<x<b. (22)

From (22), the variational expression for the line capaci-



KITAZAWA AND HAYASHI: STRIPLINES WITH ANISOTROPIC MEDIA

tance can be obtained [9]

1

1_%
c 0

/

b
/wa(x)G(a; x|x"Yo(x") dadx’dx
0

{fabo(x) dx}2

where Q is the total charge on the sfrip conductora<x <b
b
0 =f o(x)dx. (24)

Equation (23), together with (21) and (17)—(19), suggests
that, in the quasi-static approximation, coupled strips with
multilayered uniaxially anisotropic media can be trans-
formed into the case with effective isotropic layers, of
which the effective thickness and the relative permittivity

are e, , /€;, -d; and ye, , €;, , Tespectively.

1V. HYBRID-MODE ANALYSIS

a

(23)

The analytical method for the frequency-dependent
characteristics of coupled strips shown in Fig. 1 is ex-
plained here. This method is analogous to those used in
[1]-[3] and will be outlined briefly.

The transverse electric fields, which were obtained in the
integral representation in Section II, must be zero on the
strip conductors at z = 0. This gives the integral equation
on the current density i(x) and the propagation constant
in the y-direction B,. The unknown current densities i (x)
and i,(x) are expanded in terms of known sets of basis
functions as follows:

Nx
iX(x)= E axkka(x)
k=1
iy(x)= kélaykfyk(x) (25)

where a,, and g, are unknown coefficients. Substituting
(25) into the integral equation and applying Galerkin’s
procedure, we obtain a set of simultaneous equations on
the unknown a,, and a,. The propagation constant can
be obtained by searching the nontrivial solution.

The definition for the characteristic impedance is not
uniquely specified due to the propagation of the hybrid
mode. The definition chosen here is

PAREL
IO

(26)

where I, is the total current on one strip conductor, and

P, is the average power flow along the y-direction.

V. Basis FUNCTIONS
The line capacitance is calculated by applying the Ritz
procedure to the variational expression (23). In this proce-
dure, we express the unknown charge distribution o(x) as

a<x>=f0<x>+k§Akfk(x> @)
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Fig. 3. (a) Coupled microstrips. (b) Coupled suspended strips. (¢} Cou-
pled strips with overlay.

where A, are variational parameters which are determined
so that the best approximation is obtained.

In the numerical computations, the choice of the basis
functions, f,(x) in (27) and f,,(x) and f,,(x) in (25), is
important, It is desirable that the edge effect should be
properly accounted for, and that the approximation to the
true value should be systematically improved by increasing
the number of basis functions. Taking these requirements
into account, we adopt the following families of functions
for basis functions:

ful) o 2250

) Tk_l{_%(_’f_n:/_sl}

Ji- (s’

S=(a+b)/2, W=b—a

fee1(x) }
fyk(x)

(28)

where T, (y) and U,(y) are Chebyshev’s polynomials of
the first and second kind, respectively. By the use of these
basis functions, the fast convergence to the exact values is
obtained. Preliminary computations show that N=2 in
(27) and N, = N, = 2 in (25) are sufficient for any case.

VL

Numerical computations were carried out for single and
coupled microstrips (Fig. 3(a)), coupled suspended strips
(Fig. 3(b)), and coupled strips with overlay (Fig. 3(c)). In
the open microstrip configurations of Fig. 3, the boundary
condition (6) or (9) for Fig. 1 should be replaced by the
radiation condition. However, the resulting equations thus
obtained are the same as those for Fig. 1 in which d, >«
or d; — co. These calculations were performed using the
same computer program with very little modification.

NUMERICAL RESULTS
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Fig. 4. Dispersion characteristics of single microstrip on sapphire. (¢ |
=94, ¢, =11.6; -—hybrid-mode; —--—quasi static;
El-Sherbiny’s [4].)
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Fig. 5. Dispersion characteristics of the first higher order mode of single
_ microstrip on sapphire. (—this theory; —-—TM, mode of a
sapphire-coated conductor; — ——El-Sherbiny’s {4].)
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Fig. 6. Characteristic impedance of single microstrip on sapphire.

Fig. 4 shows the dispersion characteristics, the frequency
dependence of the effective diclectric constant €., =
B3 /w%,p,, of single microstrip on sapphire substrates,
where €., for the dominant mode is reported and com-
pared with the results of El-Sherbiny [8]. The agreement is
quite good, although some disagreement appears for wide
strips.

Fig. 5 shows the dispersion characteristics of the first
higher order mode, which are also compared with those
from [8]. Fig. 5 also presents the dispersion characteristics
of the TM,, surface wave of the sapphire coated conductor
which results when W =0. When the strip is not so wide
compared with the substrate, the dispersion characteristics
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Fig. 7. (a) Dispersion characteristics of coupled microstrips on sapphire.
(b) Characteristic impedance of coupled microstrips on sapphire. (W/h
=1, a/h=0.25; —even mode (hybrid-mode); — ——odd mode (hy-
brid-mode); —-—even mode (quasi-static); —--—odd mode (quasi-
static).)

Fig. 8. Dispersion characteristics of coupled suspended strips. (¢ | = 9.4,
€, =116, W/h=1, a/h=025 —even mode (hybrid-mode);
———o0dd mode (hybrid-mode); —-— even mode (quasi-static); —--
— odd mode (quasi-static).)
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Fig. 9. Dispersion characteristics of coupled strips with overlay. (e | =
94, ¢ =116, €,= 9.6, W/h=1, a/h=1025, —even mode (hybrid-
mode); ——-—odd mode (hybrid mode); —-— even mode (quasi-
static); —--—odd mode (quasi-static).)
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of the first higher order mode are indistinguishable from
those of the TM,, surface wave,

The frequency dependence of the characteristic imped-
ance of single microstrip is shown in Fig. 6. Comparison of
the results by this method and those from [8] shows that
both results converge to the quasi-static values calculated
from (23), but that some discrepancies appear at high
frequencies. For single microstrip, the characteristic imped-

“ance is defined as

2Pave (29)

Z. =
0 Ig

instead of (26) in our calculations, whereas it is defined as
the ratio of the voltage at the center of the strip to the total
longitudinal current in [8]. ,

The dispersion characteristics of coupled microstrips,
coupled suspended strips, and coupled strips with a dielec-
tric overlay are depicted in Figs. 7, 8, and 9, respectively. It
should be noted that the dispersion characteristics of the
even mode of coupled suspended strips is more sensitive
than that of the odd mode to the variation in d/h, there-
fore the frequency at which both modes have the equal
phase velocity varies largely.

VIL

Various types of striplines with anisotropic media have
been analyzed using the same approach, which is based on
the network analytical method of electromagnetic fields. In
this analytical approach, the ‘derivation of Green’s func-
tions is based on the conventional circuit theory, therefore
the formulation for the comphcated structures is straight-
forward.

Computations have been carried out by employing, the
efficient method based on the Ritz and Galerkin procedure
to calculate the propagation characteristics of single and
coupled microstrips, coupled suspended strips, and coupled
strips with overlay. Numerical results of single microstrip
were compared with other available data.

CONCLUSIONS
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